American College of Sports Medicine Roundtable on Hydration and Physical Activity: Consensus Statements

Douglas J. Casa, PhD, ATC, FACSM*, Priscilla M. Clarkson, PhD, FACSM, and William O. Roberts, MD, FACSM

Address
*University of Connecticut, Department of Kinesiology, 2095 Hillside Road, U-1110, Storrs, CT 06269-1110, USA.
E-mail: douglas.casa@uconn.edu

Current Sports Medicine Reports 2005, 4:115–127
Current Science Inc. ISSN 1537-890x
Copyright © 2005 by Current Science Inc.

Introduction
An international panel of experts convened for an American College of Sports Medicine (ACSM) Roundtable dealing with Hydration and Physical Activity on December 8–9, 2003, in Boston, MA. The purpose of the meeting was to conduct an evidence-based analysis of hydration-related issues that have recently generated controversy or confusion in the scientific and lay communities. Some of the questions addressed by the Roundtable Panel included the following: How are euhydration and dehydration accurately determined in both laboratory and field settings? Are we unintentionally encouraging athletes to over-drink? How much fluid should an athlete consume each day? Under what circumstances does dehydration negatively affect health and performance? What are the best recommendations for fluid, electrolyte, and carbohydrate replacement before, during, and after exercise? Does dehydration contribute to collapse during and after exercise? Does dehydration contribute to the genesis of exertional heat stroke? How does exercise-related hyponatremia develop? and finally, How is hyponatremia best prevented?

This document summarizes the outcome of the Roundtable presentations and discussions using a format that reflects the evidence-based approach used during the 2-day meeting. Each of the consensus statements in this document bears a designation of A, B, C, or D (Table 1). These designators reflect strength of evidence determinations as noted below. The related references are not comprehensive, but are meant to provide key citations in support of the consensus statements. The Roundtable panel focused primarily on hydration issues related to athletes, but many of the consensus statements may also be applicable to military, occupational, fitness, and recreational settings.

Fluid and Electrolyte Requirements

Assessing body hydration status
During prolonged or strenuous physical activity, body water flux is primarily caused by sweat losses, although urine and respiratory fluid losses contribute to the final total body water status. Maintaining baseline euhydration status is important for day to day training safety and performance of athletes and active people. Dehydration is a body water deficit that occurs during physical activity and in athletes is usually characterized by hyperosmotic hypovolemia, although hypo-osmotic hypovolemia can occur in some situations. During hot weather training, dehydration occurs more frequently and has more severe consequences. A practical approach to monitor day to day fluid status is important for athletes who are training strenuously, especially in hot weather conditions or when wearing insulating clothing or equipment.

1. When fluid intake matches fluid loss, daily body mass will fluctuate by less than 1% and hydration status can be reliably estimated using as few as three consecutive days of first-morning body weights measured after voiding.
 i. Level of evidence: B
 ii. References: Cheuvront et al. [1], Casa et al. [2]

2. A body water deficit of greater than 2% of body weight marks the level of dehydration that can adversely affect performance.
 i. Level of evidence: A
 ii. References: Sawka [3], ACSM [4], Cheuvront et al. [5]

3. Several techniques have been used to measure and monitor hydration in the laboratory setting.
 A. Total body water is best measured by isotope techniques.
 i. Level of evidence: A
 ii. References: Ritz [6]
 B. Plasma osmolality is a reliable indication of hydration status. A euhydrated athlete should have a plasma osmolality between 280 mOsm/kg and 290 mOsm/kg.
 i. Level of evidence: A
 ii. References: Senay [7], Robertson et al. [8], Popowski et al. [9]
 C. Fluid regulatory hormones can be confounded and alone are not good markers of hydration status.
 i. Level of evidence: B
 ii. References: Francesconi et al. [10], Montain et al. [11]
4. Several techniques have been used to estimate hydration in the field setting.

A. Urine-specific gravity, urine color, and urine osmolality are useful screening measures of hydration status. A euhydrated athlete will usually have a urine specific gravity of less than 1.020, a pale yellow urine color, and a urine osmolality of less than 700 mOsm/kg.

 i. Level of evidence: A
 ii. References: Adolph [12], Popowski et al. [9], Armstrong et al. [13], Armstrong et al. [14], Shirreffs and Maughan [15], Bartok et al. [16]

B. Bioelectric impedance can provide an indication of total body water, but is a poor indicator of hydration status or of changes in hydration status.

 i. Level of evidence: A
 ii. References: O’Brien et al. [17,18], Armstrong et al. [19]

5. Practical field measurements of hydration should be used to measure or monitor hydration status in athletes.

A. Day to day body weight changes are an acute estimate of hydration changes, if careful baseline measures are obtained and confounding factors are controlled.

 i. Level of evidence: A
 ii. Reference: Cheuvront et al. [20]

B. A day to day decrease in body mass of greater than 1% below the baseline is a marker of dehydration.

 i. Level of evidence: B
 ii. References: Adolph and Dill [21], Adolph [22], Cheuvront et al. [1]

C. A combination of baseline first-morning, postvoiding weight and plasma osmolality of less than 290 mOsm/kg, urine osmolality of less than 700 mOsm/kg, urine specific gravity of less than 1.020, or pale yellow urine (the color of lemonade, 1–3 on the Urine Color Chart) can give a prediction of a euhydrated condition in most athletes.

 i. Level of evidence: A
 ii. References: Ritz [6], Popowski et al. [9], Senay [7], Armstrong et al. [13], Bartok et al. [16], Shirreffs and Maughan [15], Casa et al. [2], Cheuvront et al. [1]

D. The difference in pre- and postactivity body weight is a reasonable estimate of acute body water losses and estimates the volume of fluid replacement needed to approximate euhydration, assuming that exercise began in a euhydrated state.

 i. Level of evidence: B
 ii. Reference: Cheuvront et al. [20]

E. Clinical signs and symptoms such as thirst, dizziness, headache, tachycardia, oral mucosal surface moisture, skin turgor, and others should not be ignored, but are too generalized to be of predictive use and the assessment of dehydration via these signs and symptoms is too imprecise to accurately assess the presence of hydration in an athlete.

 i. Level of evidence: D
 ii. References: Barkin and Ward [23], Engel et al. [24]

Table 1. Level of evidence guide

<table>
<thead>
<tr>
<th>Evidence category</th>
<th>Level of evidence</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Randomized controlled trials (rich body of data)</td>
<td>Substantial number of well-designed studies; substantial number of subjects; consistent pattern of findings</td>
</tr>
<tr>
<td>B</td>
<td>Randomized controlled trials (limited body of data)</td>
<td>Limited number of studies; includes post-hoc, field studies, subgroup, or meta-analyses; pertains when number of randomized controlled trials is small, results are inconsistent, or subject populations differed from the target population</td>
</tr>
<tr>
<td>C</td>
<td>Nonrandomized trials and observational studies</td>
<td>Evidence is from outcomes of uncontrolled or nonrandomized trials or from clinical observations or case studies</td>
</tr>
<tr>
<td>D</td>
<td>Panel consensus judgment</td>
<td>Used when guidance is needed, but literature is lacking; this is an expert judgment based on a synthesis of published evidence, panel consensus, clinical experience, and laboratory observations</td>
</tr>
</tbody>
</table>

ment recommendation is prudent for athlete safety during activities where a large sweat loss (eg, > 1L) is expected. Athletes should learn to estimate sweat rate to optimize hydration strategies for long-duration activities.

1. Dehydration results from sweat, respiration, urine, and insensible skin losses that are not replaced.
 A. For inactive persons in temperate conditions, daily water needs can be as small as 1 to 2 L, but extended periods of intense exercise can increase daily water requirements to more than 10 L. However, for most moderately active people, daily water needs typically range between 3 and 5 L.
 i. Level of evidence: B
 ii. References: Institute of Medicine [25], Lentner [26], Leiper et al. [27,28]

B. During vigorous physical activity, hourly sweat losses from 0.5 to 2.0 L/h are common, with other extremes possible.
 i. Level of evidence: A
 ii. References: Rehrer and Burke [29]

C. Athletes often dehydrate involuntarily during exercise. Thus, during intense physical activity and environmental stress, fluid losses commonly exceed replacement, resulting in an acute fluid deficit.
 i. Level of evidence: A
 ii. References: Rehrer and Burke [29], Maughan et al. [30], Adolph [12]

2. Exercise in specific environments or conditions can further exacerbate fluid loss.
 A. Athletes involved in long-duration activities should attempt to replace sweat losses during activity, but should not exceed the volume of sweat lost during the activity. The minimum fluid replacement goal during most activities is to limit fluid deficits to less than 2% of baseline, euhydrated body weight.
 i. Level of evidence: B
 ii. Reference: Cheuvront et al. [5]

B. Sweat sodium concentration during exercise can range from about less than 20 to more than 80 mmol/L or about 1 to 5 g of table salt per liter of sweat. An athlete with an average sweat rate of 1 L/h can lose approximately 2 to 10 g of table salt in a 2-hour practice.
 i. Level of evidence: B
 ii. References: Maughan et al. [30], Shirreffs et al. [31]

C. An endurance athlete with a sweat rate of 1 L/h who exercises for 5 hours can lose 5 to over 30 g of table salt during the event.
 i. Level of evidence: C
 ii. References: Maughan et al. [30], Shirreffs et al. [31]

D. General prescriptive guidelines for fluid and electrolyte replacement practices for athletes are not meaningful across or even within sports due to considerable variability in the sweat losses of athlete and sports-specific differences in the factors that influence fluid intake during exercise. Education messages should encourage athletes to recognize their individual needs based on sweat losses and to target issues that influence fluid intake during exercise. For example, opportunities to drink, availability of fluids, and the culture and rules of the sport can all influence intake and these factors should be taken into account when designing fluid and electrolyte replacement regimens.
 i. Level of evidence: D

Diet effects on water requirements

Body water is replaced by beverage consumption and by ingestion of foods that contain water. A balanced diet that provides about 2500 to 3000 kcal will generally provide about 1 liter of water per day from food alone. In addition, the consumption of food stimulates drinking. Although foods and beverages provide fluids, their composition can influence fluid requirements by altering fluid retention.

1. A normal balanced diet will usually replace sodium lost in activity except for low-sodium diets (less than about 3 g/d) early in heat exposure and for athletes with very high sweat sodium losses.
 i. Level of evidence: A
 ii. References: Armstrong et al. [32], Glace et al. [33], Rehrer [34], Twerenbold et al. [35]

2. Caffeine, alcohol, and protein can modestly increase urine water losses.
 A. Caffeine ingestion has a modest diuretic effect in some individuals but does not affect water replacement in habitual caffeine users, so caffeinated beverages (eg, coffee, tea, soft drinks) can be ingested during the day by athletes who are not caffeine naïve.
 i. Level of evidence: B
 ii. References: Eddy and Downs [36], Armstrong [37], Institute of Medicine [25], Maughan and Griffin [38]

 B. Caffeinated drinks are not recommended when rapid rehydration after exercise is desired because caffeine can promote modest diuresis in some individuals.
 i. Level of evidence: B
 ii. Reference: Gonzalez-Alonso et al. [39]

 C. Concentrated alcohol solutions (spirits or hard liquors) have a significant diuretic effect and should not be used when rapid and complete rehydration is desired.
 i. Level of evidence: C
 ii. References: Wen et al. [40], Mills et al. [41], Eggleton [42]

 D. Alcohol concentrations like those in beer may not adversely affect long-term rehydration status in athletes, but should not be relied upon when rapid and complete rehydration is desired.
 i. Level of evidence: C
 ii. References: Wen et al. [40], Shirreffs and Maughan [43]

3. High-fiber diets (more than 20–30 g/d) can increase fecal water loss and minimally increase water needs.
 i. Level of evidence: B
 ii. Reference: McEligot [44]

4. High-protein diets require an extra 40 to 60 mL water intake to clear each additional gram of urea nitrogen (protein is 16% nitrogen). The extra fluid loss is trivial under normal circumstances, but may lead to dehydration in athletes who are purposefully restricting fluid intake in an attempt to lose weight.
Fluid replacement after activity

Fluid and solute replacement after activity is essential to restoring homeostasis. An athlete involved in vigorous training or competition with sessions that are spaced at less than 24 hours requires more structured replacement strategies than the athlete who has more than 24 hours between sessions. Large-volume fluid intake immediately following activity increases urine production, whereas spacing the fluid intake in even portions over longer periods improves rehydration. In addition to replacing body water, extracellular sodium losses also need to be replaced under these circumstances.

1. The difference in pre- and postexercise body weights is a measure of dehydration for a given exercise session (see 5A under Assessing Body Hydration Status).
 i. Level of evidence: A
 ii. Reference: Cheuvront [20]
2. Rehydration strategies depend on the magnitude of the fluid deficit incurred and the time interval for rehydration prior to the next exercise session.
 A. Athletes often wait until mealtime to fully replace water and electrolyte losses. Fortunately, normal food and fluid intake is usually sufficient to replace water and electrolyte losses when exercise sessions are more than 24 h apart.
 i. Level of evidence: B
 ii. Reference: Casa et al. [2]
 B. Rehydration within 6 hours of exercise requires ingestion of water and sodium in excess of the existing body deficits to compensate for normal fluid needs and obligatory urine loss. This represents an empiric replacement volume of 125% to 150% of the decrease in body mass with the equivalent of 50 to 100 mmol/L of sodium will most effectively replace the deficit.
 i. Level of evidence: B
 ii. References: Mitchell et al. [46,47], Shirreffs et al. [48], Adolph [22]
 C. Ingesting 2 L of fluid in 500 mL aliquots spaced every 20 to 30 minutes is more effective for rehydration than drinking the same volume in a single bolus immediately after the exercise session. Rapid replacement of fluid after exercise stimulates increased urine production, resulting in less body water retention.
 i. Level of evidence: B
 ii. References: Kovacs et al. [49], Wong et al. [50], Archer and Shirreffs [51], Adolph [22]
3. Salt concentration of the rehydration beverage is an important consideration.
 A. Salty foods (eg, pretzels) or salty fluids such as soup bouillon (100 mmol/L) and tomato juice (100 mmol/L) consumed before or with other fluids including sports drinks (20 mmol/L or greater) provide a sodium source, promote fluid retention, and stimulate fluid intake.
 i. Level of evidence: B
 ii. References: Lloyd et al. [45]

Performance Considerations

Athletes who incur substantial fluid deficits during physical activity may experience some loss of performance capacity, especially in long-duration events that take place in the heat. Many physiologic factors contribute to the performance decrements associated with dehydration and result in degraded physical and mental performance, increased cardiovascular strain, changes in metabolism, and decreased heat tolerance.

1. Mental performance can be degraded by dehydration at rest and during exercise.
 A. Heat stress and increasing body temperature impair mental performance. The decrement is greater with increasing duration and increasing task complexity. Attention and vigilance are the first attributes to be affected.
 i. Level of evidence: B
 ii. References: Ramsey and Kwon [63], Vasmatzidis et al. [64], Rodahl [65], Hancock [66], Hancock and Vasmatzidis [67]
B. Dehydration negatively affects short-term memory, working memory, psychomotor and visual motor skills, arithmetic ability, and mood.

i. Level of evidence: B

ii. References: Gopinathan et al. [68], Sharma et al. [69], Cyriac et al. [70], Anslie et al. [71], Sawka et al. [72]

C. Dehydration of more than 2% of body mass increases the subjective perception of the exercise difficulty.

i. Level of evidence: A

ii. References: Coyle and Montain [73], Maresh et al. [74], Barr et al. [75], Montain and Coyle [76], Riebe et al. [77]

D. Drinking carbohydrate beverages (to provide 30–60 g carbohydrate/h) during vigorous exercise can delay mental fatigue and improve cognitive function, mood, motor skill performance, and perceived exertion better than drinking the same volume of water.

i. Level of evidence: B

ii. References: Burgess et al. [78], Coggan and Coyle [79], Coyle and Montain [80], Utter et al. [81], Felig et al. [82], Coyle et al. [83], Kang et al. [84], Welsh et al. [85], Lieberman et al. [86], Davis et al. [87], Nicolas et al. [88], Below et al. [89]

E. Caffeine ingested before or during exercise in amounts of 2 mg/kg body mass or more (eg, 2 mg/kg = 140 mg in a 70-kg athlete) can reduce some deficits in mental performance and mood during prolonged intense exercise and heat stress. However, there is a wide variation in individual dose response to caffeine such that side effects of anxiety and tremor may interfere with performance in some individuals while not adversely affecting others.

i. Level of evidence: C

ii. References: Leiberman et al. [90,91], Maughan and Griffin [38], Armstrong [37]

2. Dehydration of more than 2% of body mass can compromise physiologic function and impair exercise performance capacity. Greater levels of dehydration further exacerbate the negative responses.

A. Dehydration decreases cardiac output, skin blood flow, and sweat production and accelerates the rise in body temperature associated with exercise in the heat.

i. Level of evidence: A

ii. References: Armstrong et al. [92], Sawka and Coyle [93]

B. The greater the level of dehydration, the greater the hyperthermia and cardiovascular strain.

i. Level of evidence: A

ii. References: Sawka et al. [94], Montain and Coyle [76], Montain et al. [95]

C. There are no thermoregulatory or performance benefits to overhydration before or during activity, provided adequate fluid can be ingested during exercise.

i. Level of evidence: B

ii. References: Latzka et al. [96], Latzka et al. [97], Wingo et al. [98], Sawka and Coyle [93]

D. Maintaining hydration at less than a 2% body mass deficit during exercise helps preserve heart rate, stroke volume, cardiac output, skin blood flow, normal core temperature, and lactate metabolism.

i. Level of evidence: A

ii. Reference: Armstrong et al. [92]

E. Minimizing hydration to less than 2% body mass and ingesting carbohydrate improves total physical work capacity, increases time to exhaustion, improves time trial performance, improves power output, and maintains motor skills related to sports performance (eg, soccer dribbling and tennis stroke accuracy).

i. Level of evidence: A

ii. References: Armstrong et al. [99], Below et al. [89], Walsh et al. [100]

F. Partial rehydration will still maintain performance over no rehydration if an athlete cannot match fluid intake to fluid losses during exercise.

i. Level of evidence: B

ii. References: Casa et al. [62], Montain and Coyle [76]

G. Drinking carbohydrate-electrolyte beverages enhances performance compared with drinking the same volume of water during prolonged (~45–50 min) exercise or in high-intensity, intermittent exercise. In brief, the performance benefits of hydration and carbohydrate intake are independent and additive.

i. Level of evidence: A

ii. References: Davis et al. [87,101], Welsh et al. [85], Burgess et al. [102], Coggan and Coyle [79], Coyle and Montain [80], Utter et al. [81], Felig et al. [82], Coyle et al. [83], Kang et al. [84], Below et al. [89]

3. Occupational work performance can be compromised by dehydration.

A. Dehydration of more than a 2% loss in body mass lowers heat tolerance and reduces work capacity when uncompensable heat stress occurs.

i. Level of evidence: B

ii. References: Cheung and McLellan [103–105], McLellan et al. [106], Sawka et al. [72], Latzka et al. [97]

B. Reducing dehydration by ingesting fluid before and at regular intervals during exercise delays fatigue and increases work capacity when uncompensable heat stress occurs.

i. Level of evidence: B

ii. References: Cheung and McLellan [103], McLellan et al. [106], McLellan and Cheung [107], Cheung and McLellan [104,105], Sawka et al. [72]

C. Adequate fluid replacement increases the body temperature that can be tolerated prior to heat intolerance and exhaustion during uncompensable heat stress.

i. Level of evidence: B

ii. References: McLellan et al. [106], McLellan and Cheung [107]

D. Carbohydrate-electrolyte beverages that include desirable flavor, carbohydrate, and sodium chloride increase voluntary fluid intake compared with plain water in both occupational and athletic settings.

i. Level of evidence: A
Serious exertional heat illness

Serious heat illness includes the conditions of heat exhaustion and heat stroke. Exertional heat illness can occur during physical exercise when the combination of heat gain from metabolic and environmental sources exceeds the body’s capacity to remove excess heat and, as a result, the core temperature rises. In addition, some cases of serious heat illness are probably associated with increased susceptibility of body tissues to heat stress rather than an inability to thermoregulate. Although severe exertional heat illness occurs more frequently in hot-humid and hot-dry environments during high-intensity or fast-pace activity, heat stroke can occur at ambient temperatures as low as 10°C (50°F). Clothing and equipment that inhibit body heat loss increase body heat storage and fluid losses. Symptoms of heat illness are nonspecific and include exhaustion, fatigue, feeling hot or cold or lightheaded, nausea, stomach cramps, headache, muscle cramps, and palpitations. Elevated body temperature leads to altered mental status, central nervous system (CNS) changes, altered vital signs, hyperventilation, vomiting, muscle spasms, diarrhea, tachycardia, and inability to walk. The symptoms of heat stroke, although defined by significant CNS involvement and usually accompanied by evidence of other tissue and organ injury, are often nonspecific and can be misinterpreted as severe heat exhaustion if core (rectal) temperature is not measured to confirm body temperature elevation. Common CNS changes associated with exertional heat stroke are confusion, amnesia, sensory motor deficits, visual disturbance, disorientation, impaired concentration, headache, inability to walk, dizziness, seizure, delirium, stupor, and coma, but initial lucid intervals are possible.

1. Exertional heat stroke can occur in hot conditions without dehydration if the heat from muscle work cannot be removed from the body at a rate sufficient to prevent a progressive rise in core temperature.

 i.Level of evidence: B

 ii.References: Armstrong et al. [116], Brodeur et al. [117], Noakes et al. [118], Senna et al. [119]

2. Dehydration increases the risk of heat exhaustion and heat stroke during and immediately after activity.

 A. Dehydration compromises cardiac output and the capacity of the cardiovascular system to transport metabolic heat to the body surface.

 i.Level of evidence: A

 ii.References: Sawka and Coyle [93], Kenney et al. [120], Montain and Coyle [76], Casa et al. [2], Nadel et al. [121], Montain et al. [122]

 B. Dehydration increases the risk of heat injury by reducing blood flow, making it more difficult to perfuse vulnerable tissues.

 i.Level of evidence: B

 ii.References: Gonzalez-Alonso et al. [123], Bouchama and Knochel [124], Hall et al. [125]

C. Fluid loss from vomiting or diarrhea increases the risk of exertional heat illness.

D. There is little evidence that supplementing with potassium, magnesium, or quinine is effective in reducing the risk of muscle cramps associated with exercise.

 i.Level of evidence: D

 ii.Reference: Bergeron [113]

2. Exercise-associated muscle cramps can be treated effectively with oral beverages that contain 50 to 100 mmol/L of sodium chloride (salt) and/or intravenous infusion of normal saline.

 i.Level of evidence: D

 ii.References: Bergeron [113], Anderson and Eichner [114]

Hydration and Health

Exertional muscle cramps

Severe muscle cramps that occur during exercise are often called heat cramps because they occur more frequently with heat stress. The cause of muscle cramps during and immediately after exercise is not known, but is thought to be related to salt loss, dehydration, and muscle fatigue accompanying exercise. These cramps are possible during any type of sport, but are more common in football “two-a-days,” tennis matches in hot environments, 100-mile cycling races, and late in tropical triathlons. Similar cramps can occur in winter sports, such as in long-distance cross-country skiers and in ice hockey players. This paradox—heat cramps in winter sports—suggests that even when the macroclimate is cool, the microclimate of some athletes can be hot, and that heat cramps can be considered sweat cramps. An alternate explanation could be that muscle fatigue, salt loss, and fluid losses induced by prolonged exercise and not entirely dependent on environmental heat stress cause severe muscle cramping.

1. Severe muscle cramps that occur during exercise are related to large losses of salt in sweat, dehydration, and muscle fatigue.

 A. Athletes prone to muscle cramps during and after exercise tend to sweat more heavily and lose considerably more sodium in sweat than those who do not experience cramps.

 i.Level of evidence: C

 ii.References: Bergeron [111], Stofan et al. [112]

 B. The incidence of muscle cramping during and after exercise in hot conditions can be reduced by increasing dietary salt content and remaining well hydrated during exercise by ingesting beverages containing salt.

 i.Level of evidence: D

 ii.References: Bergeron [113], Anderson and Eichner [114]

C. Heat cramps usually occur late during practice or competition, implicating muscle fatigue as a factor.

 i.Level of evidence: D

 ii.References: Bergeron [113], Schwellnus [115]

D. There is little evidence that supplementing with potassium, magnesium, or quinine is effective in reducing the risk of muscle cramps associated with exercise.

 i.Level of evidence: D

 ii.Reference: Bergeron [113]
i.Level of evidence: D
ii.References: Group consensus, Whang [126]

3. Maintaining normal hydration levels reduces the risk of exertional heat illness.
 A. Maintaining normal hydration levels supports cardiovascular function, heat transport, and sweating capacity.
 i.Level of evidence: A
 B. Dehydration will negate many of the thermoregulatory advantages conferred by heat acclimatization and physical training.
 i.Level of evidence: A
 C. Individuals who carry a gene for cystic fibrosis may lose excessive salt in sweat and be more prone to substantially low levels.
 i.Level of evidence: B
 D. Prolonged periods of excessive drinking can result in hypervolemia that dilutes the serum sodium to dangerously low levels.
 i.Level of evidence: A

i.Level of evidence: C
ii.References: Shadid et al. [128], Seraj et al. [129], Adolph [12]

5. Other equally important risk factors for exertional heat stroke are fast-paced exercise, inadequate acclimatization to heat and humidity, inadequate conditioning, alcohol consumption the day prior to training or competition, ephedra-containing supplement use, recent illness, high body mass, poor fitness, a variety of medications, and hard training in heat/humidity on the previous day.
 i.Level of evidence: B
 ii.References: Armstrong et al. [130], Noakes et al. [118], Gardner et al. [131], Phinney et al. [132], Kark et al. [133], Armstrong and Maresh [134], Crandall et al. [135]

6. Athletes acclimatized to heat have a reduced risk of heat illness.
 A. Five to 10 days of heat exposure and training will acclimatize athletes to heat, with physiologic adaptations that include improved cardiovascular stability, earlier sweating, increased sweat volume and distribution over the body, and decreased sodium concentration in sweat.
 i.Level of evidence: A
 B. Dehydration will negate many of the thermoregulatory advantages conferred by heat acclimatization and physical training.
 i.Level of evidence: A
 C. Individuals who carry a gene for cystic fibrosis may lose excessive salt in sweat and be more prone to substantially low levels.
 i.Level of evidence: B

Exertional hyponatremia

The rapid dilution of serum sodium from normal levels of 135 to 145 mEq/L to levels below 130 mEq/L may lead to sufficient intracellular swelling to alter CNS function; a syndrome called symptomatic hyponatremia. During prolonged activity, serum sodium can be diluted by excessive fluid intake alone or combined with a sodium deficit of the extracellular fluid due to sweat loss. Symptoms of hyponatremia are similar to dehydration, exertional heat exhaustion, and exertional heat stroke, and may include confusion, disorientation, progressively worsening headache, nausea, vomiting, aphasia, impaired coordination, muscle cramps, and muscle weakness. Complications of severe hyponatremia include cerebral and pulmonary edema that can result in seizure, coma, and cardiorespiratory arrest. Although exertional hyponatremia is generally treatable without long-term sequelae, deaths have occurred when blood sodium levels fall rapidly to low levels (eg, < 120 mEq/L).

1. Exertional hyponatremia can occur as a result of excessive fluid ingestion alone or avid fluid ingestion combined with high sweat sodium losses.
 A. Prolonged periods of excessive drinking can result in hypervolemia that dilutes the serum sodium to dangerously low levels.
 i.Level of evidence: A
 B. Large salt loss in sweat, such as occurs in “salty sweaters” (60–110 mEq Na+/L sweat), will contribute to the dilution of extracellular sodium and will reduce the amount of fluid intake necessary to produce symptomatic hyponatremia.
 i.Level of evidence: A
 C. Individuals who carry a gene for cystic fibrosis may lose excessive salt in sweat and be more prone to substantially dilute extracellular sodium with avid drinking.
 i.Level of evidence: B

2. Exertional hyponatremia is relatively rare and appears to be most common during endurance activities such as running events lasting longer than 4 hours, tri-
athlons lasting longer than 9 to 13 hours, and prolonged military training.
A. Exertional hyponatremia is more common in slow-paced participants as they appear to take more frequent advantage of water availability and consume larger volumes when they drink than do faster-paced participants.
 i.Level of evidence: C
 ii.References: Speedy et al. [156], Davis et al. [164], Hew et al. [154], Speedy et al. [158]
B. Women seem to be at greater risk of developing exertional hyponatremia because their fluid intake sometimes exceeds their sweat rate and because their smaller body mass (and total body water) can be more easily affected by over-drinking.
 i.Level of evidence: C
 ii.References: Davis et al. [164], Speedy et al. [156], Speedy et al. [158]
C. The incidence of symptomatic hyponatremia during endurance exercise events such as the marathon and triathlon is generally low (probably less than one in 1000 finishers), although isolated ultradistance races have produced higher incidence rates (40–50 in 1000 finishers).
 i.Level of evidence: C
 ii.References: Hew et al. [154], Noakes et al. [60], Speedy et al. [156], Armstrong [165]
3. Educational materials regarding prevention of hyponatremia should be provided to competitive and recreational athletes as well as occupational workers performing prolonged work lasting in excess of 3 to 4 hours.
A. Fluid intake during exercise should never exceed sweat loss. The difference between body weight (nude) before and after exercise gives an estimate of sweat rate and hence of fluid replacement volumes. Weight gain during activity indicates excessive fluid intake.
 i.Level of evidence: A
 ii Reference: ACSM [4]
B. Athletes performing prolonged exercise lasting in excess of 3 to 4 hours should ingest snacks or fluids containing sodium to help offset the loss of salt in sweat. This is especially recommended for individuals who know that they lose excessive amounts of salt in their sweat.
 i.Level of evidence: C
 ii.Reference: Montain et al. [157]

Special populations: children and older adults
Hydration is a particular concern for children and the elderly because these groups are more susceptible to heat illness due to less effective thermoregulatory responses. The response of children and the elderly to dehydration is different from that of young adults; elderly individuals are often not able to maintain hydration as easily during exercise and children are at increased risk for numerous reasons.
1. Thermoregulatory systems in children are not as developed as in adults, and children are less heat tolerant than adults to a high climatic heat stress. Sweat rate and sweat rate per body surface area are less in children than adults, which decreases evaporative heat loss for cooling when exercising in a hot environment. The large surface area to body mass ratio in children increases their rate of heat absorption from hot environments.
 i.Level of evidence: B
 ii.References: Araki et al. [166], Bar-Or [167]
2. Children often do not voluntarily drink adequate amounts of fluid during physical activity and can dehydrate easily during activity.
A. Dehydrated children become hyperthermic faster than dehydrated adults in the same environment.
 i.Level of evidence: B
 ii.Reference: Bar-Or et al. [168]
B. Even a 1% to 2% reduction in body mass reduces aerobic performance in 10- to 12-year-old boys.
 i.Level of evidence: C
 ii.Reference: Wilk et al. [169]
C. Children will voluntarily drink more fluid during exercise in warm or hot environments when provided with a sports drink than when plain water is given. Voluntary drinking is further enhanced with the addition of 6% carbohydrate and at least 18 mmol/L Na (~ 100 mg/240 mL).
 i.Level of evidence: B
 ii.References: Rivera-Brown et al. [170]
D. Children with cystic fibrosis voluntarily drink less during exercise because their high sweat sodium loss reduces the osmotic drive to drink.
 i.Level of evidence: B
 ii.References: Bar-Or et al. [163], Kriemler et al. [171]
E. A flavored drink containing 50 mmol/L NaCl and 6% carbohydrate stimulates thirst in patients with cystic fibrosis.
 i.Level of evidence: B
 ii.Reference: Kriemler et al. [171]
3. Older adults (> 60 years) are less heat tolerant than younger adults in response to exercise heat stress and have higher heart rates, lower stroke volume, lower cardiac output, higher mean skin and core temperatures, and lower sweat rates than younger adults.
 i.Level of evidence: A
 ii.References: Kenney and Hodgson [172], Minson and Kenney [173]
4. Older adults (> 60 years) usually drink enough to remain well hydrated in free-living environments. However, when dehydrated, older adults rate their perception of thirst lower than younger adults and drink less as a result.
 i.Level of evidence: B
 ii.References: de Castro [174], Kenney and Chui [175], Spangler et al. [176]

Acknowledgment
Other participants of the ACSM Roundtable on Hydration and Physical Activity are as follows:
Lawrence E. Armstrong PhD, FACSM, University of Connecticut, Human Performance Laboratory, Storrs, CT.
Oded Bar-Or, MD, FACSM, McMaster University, Hamilton, Ontario, Canada.
Louise Burke, PhD, FACSM, Australian Institute of Sport, Belconnen, New South Wales, Australia.
Sam Cheuvront, PhD, United States Army Research Institute of Environmental Medicine, Natick, MA.
Ed Coyle, PhD, FACSM, University of Texas at Austin, Austin, TX.
J. Mark Davis PhD, FACSM, University of South Carolina, Department of Exercise Science, Columbia, SC.
E. Randy Eichner, MD, FACSM, University of Oklahoma Health Sciences Center, Oklahoma City, OK.
W. Larry Kenney PhD, FACSM, Penn State University, Noll Physiological Research Center, University Park, PA.
Ronald J. Maughan PhD, FACSM, Loughborough University School of Sport & Exercise Sciences, Loughborough, Leicestershire, UK.
Thomas McLellan, PhD, Operational Medicine Section, Defense Research and Development Canada, Toronto, Ontario, Canada.
Scott J. Montain PhD, FACSM, United States Army Research Institute of Environmental Medicine, Natick, MA.
Robert Murray, PhD, FACSM, Gatorade Sports Science Institute, Barrington, IL.
Michael N. Sawka, PhD, FACSM, United States Army Research Institute of Environmental Medicine, Thermal Physiology & Medicine Division, Natick, MA.
Sue Shirreffs, PhD, Loughborough University School of Sport & Exercise Sciences, Loughborough, Leicestershire, UK.
Stella Volpe, PhD, RD, FACSM, University of Pennsylvania School of Nursing, Division of Biobehavioral & Health Sciences, Philadelphia, PA.
Clyde Williams, PhD, Loughborough University School of Sport & Exercise Sciences, Loughborough, Leicestershire, UK.

References

